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Part I: Overview
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The Role of Optimization in Engineering

• A link/bridge between “science” and “engineering”, with many
applications

– signal processing, digital communication, fibre optic communication
– financial engineering
– control systems, mechanical engineering
– transportation

• What fraction of “real” problems are convex?

– By no means all
– Many go unrecognized
– Convex optimization plays important roles in nonconvex optimization

• Exploiting convexity in engineering context
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What is Convex Optimization?

• Convex sets:
S = {(x, y)|x2 + y2 ≤ 1}, ...

• Convex functions:

f(x) = |x|, ex, x2, − ln x, ...

f(x, y) = x2 + y2, −x + y4, ...

• Convex optimization problems:

minimize f0(x), subject to x ∈ X, fi(x) ≤ 0, i = 1, 2, ..., m,

where X is a closed convex set, each fi is convex function (0 ≤ i ≤ m).
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Examples of Convex Sets/Functions

Sets:
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Examples of Convex Optimization Problems

minimize f0(x), subject to fi(x) ≤ 0, i = 1, 2, ..., m.
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• each fi is a linear function, ⇒ linear programming (LP)
• f0 is quadratic and fi (i ≥ 1) is linear, ⇒ quadratic programming (QP)
• all fi are convex quadratic (QCQP)
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A Well Known Example: Minimum Least Squares

minimize ‖Ax− b‖2
, subject to Cx = d

• Well known and widely (wildly?) used in engineering and statistics

• The objective function f0(x) = ‖Ax − b‖2 is convex; the constraint set Cx = d is

an affine space, ⇒ convex.

• Much of the current practice in engineering design is based on Least Squares.

• It is time to use some new and more powerful optimization tools and models.

• This allows efficient solution of some previously considered intractable engineering

problems.

Variations:

• Note that we can take extra bound constraints `i ≤ xi ≤ ui. Easy!

• However, constraints of the form |xi − ai| ≥ 1 are difficult to handle (nonconvex).

Difficult

Easy problems can appear very similar to difficult ones!
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Semidefinite Programming (SDP)

• SDP is a broad class of conic convex optimization problems:

minimize
n∑

i=1

cixi

subject to A0 + x1A1 + x2A2 + · · ·+ xnAn ≥ 0,

where each Ai is a m ×m symmetric matrix. The constraint is called linear matrix

inequality constraint (LMI).

• The set of symmetric positive semidefinite matrices forms a convex cone. LMI is a

nonlinear constraint on x.

• SDP includes as special cases: LP, convex QP, QCQP, etc.

• Very efficient algorithms and softwares: primal/dual interior point algorithms and

efficient matlab implementation (e.g., SeDuMi).
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An Example of SDP

Covariance Matrix Approximation: For a zero mean stationary stochastic process, the

covariance matrix is positive semidefinite and Toeplitz. However, the so called finite sample

covariance matrix
Rxx(n) =

1

n

n∑

i=1

xix
T
i , xi ∈ <m

is in general not Toeplitz.

Method 1: minimizer ‖Rxx(n)−
m−1∑

i=0

riEi‖, subject to r ∈ <m
, where Ei is a

Toeplitz matrix whose i and n − i diagonals are equal to 1 and equal to zero elsewhere.

However, the resulting Toeplitz approximation matrix
m−1∑

i=0

riEi may not be positive

semidefinite.

Method 2: minimizer ‖Rxx(n)−
m−1∑

i=0

riEi‖, subject to
m−1∑

i=0

riEi ≥ 0. This is a

SDP.
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What’s the big deal about convex optimization?

Convex optimization formulation

• always achieves global minimum, no local traps

• certificate for infeasibility

• can be solved by polynomial time complexity algorithms (e.g., interior point algorithms)

• highly efficient software available

• the dividing line between “easy” and “difficult” problems (compare with solving linear

equations)

⇒ Whenever possible, always go for convex formulation.
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Part II: Basic Concepts, Theory & Algorithms

• Convex sets

• Convex functions

• Convex optimization problems: LP, QP, SOCP, SDP

• Interior Point Algorithms
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Convex Set

S ⊆ <n is convex if

x, y ∈ S, λ, µ ≥ 0, λ + µ = 1 ⇒ λx + µy ∈ S.

Geometrically, x, y ∈ S implies the line segment [x, y] ⊆ S. S is called a convex cone if

x, y ∈ S, λ, µ ≥ 0, ⇒ λx + µy ∈ S.

������������ 	�� �
��
���  � �
������ ���

� � �� �� �� !"# �$
%& ' ( �& ) ( *+& ,- . )% / 0, 1 )2' ( �

3 4

56789: 76; 56789:

<= �>" ?@A">BC

January 10, 2006 12



Basic concepts, theory & algorithms Zhi-Quan (Tom) Luo

Examples of Convex Set

• Linear subspace: S = {x | Ax = 0} is a convex cone

• Affine subspace: S = {x | Ax = b} is a convex set

• Polyhedral set: S = {x | Ax ≤ b} is a convex set

• PSD matrix cone: S = {A | A is symmetric, A ≥ 0} is convex

• Second order cone: S = {(t, x) | t ≥ ‖x‖} is convex

Important property:

Intersection of




linear subspaces

affine subspaces

convex cones

convex sets


 is also a




linear subspace

affine subspace

convex cone

convex set
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Recognizing Convex Sets

PSD matrix cone: S = {A | A is symmetric, positive semidefinite} is convex since

S =
(⋂

i6=j Sij

) ⋂ (⋂
x∈<n Sx

)
, where Sij and Sx are linear subspaces and half spaces

respectively

Sij = {A | Aij = Aji}, Sx = {A | x
T
Ax ≥ 0}.
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Recognizing Convex Sets

Second order cone: S = {(x, t) | ‖x‖ ≤ t} is a convex cone since

S =
⋂

‖a‖=1

Sa, Sa = {(x, t) | a
T
x ≤ t}.

Here we note that ‖x‖ ≤ t iff aTx ≤ t for all ‖a‖ = 1.
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Robust Linear Constraint
• Linear constraint: S = {x | aTx ≥ b} represents a half space.

• Robust linear constraint:

S̄ = {x | (a + ∆a)Tx ≥ b + ∆b, ∀ ‖(∆a, ∆b)‖ ≤ ε}

is seen as the intersection of infinitely many half spaces

• In fact, robust feasible region can be characterized as

S̄ = {x | aTx− b− ε
√
‖x‖2 + 1 ≥ 0}
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MVDR Beamforming

mininmize w
H

Ri+nw, subject to w
H

a(θ0) = 1 ⇐ Least squares!

• uniform linear array; steering vector: a(θ) = (1, ejαθ, ej2αθ, ..., ej(M−1)αθ)H

• can handle sidelope bound constraints |wHa(θ)| ≤ ε, ∀θ ∈ Θs.

• sidelope constraints can also be represented via an LMI (more later):

A0 + w1A1 + w2A2 + · · ·+ wMAM ≥ 0

• robust MVDR (more later) via robust linear constraint (more later)

mininmize w
H

Ri+nw, subject to |wH
(a(θ0) + ∆a)| ≥ 1, ∀‖∆a‖ ≤ δ

• However, constraints like “only half of wi can be nonzero”are nonconvex.
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Convex Functions

f(x) : <n → < is convex if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀ x, y ∈ <n
.

When f(x) is differentiable, f(x) is convex iff

f(x) ≥ f(x0) + ∆f(x0)
T
(x− x0), for all x, x0.
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Recognizing Convex Functions

If f(x) is twice continuously differentiable, then

f is convex ⇔ ∇2f(x) ≥ 0 for all x ∈ <n.

Examples:

Non-convex Non-differentiable convex Differentiable convex

1− ‖x‖ ‖x‖ xTAx, A ≥ 0

cos(eTx) ‖x‖1 e−‖x‖
2

xTAx, A 6≥ 0 max{‖x‖2, eTx} − log(t2 − ‖x‖2)

‖x‖3 ‖x‖2
1 − log det(X)

... ... ...
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Properties of Convex Functions
• Convexity over all lines:

f(x) is convex ⇔ f(x0 + th) is convex in t for all x0 and h

• Positive multiple:

f(x) is convex ⇔ αf(x) is convex, for all α ≥ 0

• Sum of convex functions:

f1(x), f2(x) convex ⇒ f1(x) + f2(x) is convex

• Pointwise maximum:

f1(x), f2(x) convex ⇒ max{f1(x), f2(x)} is convex

• Affine transformation of domain:

f(x) is convex ⇒ f(Ax + b) is convex
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Some Commonly Used Convex Functions

• Piecewise-linear functions: maxi{aT
i x + bi} is convex in x

• Quadratic functions: f(x) = xTQx + 2qTx + c is convex iff Q ≥ 0

• Piecewise-quadratic functions: maxi{xTQix+qT
i x+ci} is convex in x if Qi ≥ 0

• Norm functions: ‖x‖k =

(
n∑

i=1

|xi|k
)1/k

, where k ∈ [1,∞)

• Convex functions over matrices: Tr(X), λmax(X) are convex on X = XT ;

and − log det(X) is convex on the set {X | X = XT , X ≥ 0}

• Logarithmic barrier functions: f(x) =

m∑

i=1

log(bi − a
T
i x)

−1
is convex over

P = {x | aT
i x ≤ bi, 1 ≤ i ≤ m}
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Convex Optimization Problems

• Abstract form: problem

minimize f(x), subject to x ∈ C

is convex if C and f are convex (set, function)

Note: maximizing concave f over convex C is a convex optimization problem

• Standard form: problem

minimize f0(x)

subject to fi(x)≤0, i = 1, ..., m,

gi(x) = 0, i = 1, ..., p

is convex if f0, f1, ..., fm are convex, g1, ..., gp affine often written as

minimize f0(x)

subject to fi(x) ≤ 0; i = 1, ..., m,

Ax = b.
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Recognizing Convex Optimization Problems

• Consider
minimize x1 + x2

subject to −x1 ≤ 0, −x2 ≤ 0

1− x1x2 ≤ 0

It is convex in the abstract form since the feasible set is convex, but nonconvex in

standard form.

• We can replace 1− x1x2 ≤ 0 by a convex constraint − log x1 − log x2 ≤ 0.
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Recognizing Convex Optimization Problems

• Linear program: fi all affine yields linear program

minimize cT
0 x + d0

subject to cT
i x + di ≤ 0, i = 1, ..., m

Ax = b

• Constrained minimax problem:

minimize maxi{cT
i x + di}

subject to Ax ≤ b
⇔ minimize t

subject to Ax ≤ b, cT
i x + di ≤ t, ∀i
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Blind Channel Equalization via Linear Programming
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• LTI channel; impulse response h: complex, unknown; QAM modulation

• Goal: design equalizer G(ω) such that H(ω)G(ω) = e−jDω, where D is delay.

• Let xi be the channel output, and yk be the equalizer output. It is known that

minimize maxk |Re(yk)|
subject to Re(h1) + Im(h1) = 1

⇒ channel equalization.

where Re(h1) + Im(h1) = 1 is a normalizing constraint.

• Note that Re(yk)=

N∑

i=−N

Re(xk−i)Re(hi)−Im(xk−i)Im(hi) is linear in h.
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Blind Channel Equalization via Linear Programming

• Note that maxk{|Re(yk)|} is nonsmooth in h.

• Smoothing approach: approximating the ∞-norm by p-norm, with p large,

max
k
{|Re(yk)|} ≈

(∑

k

|Re(yk)|p
)1/p

and then remove the exponent 1
p to obtain a smooth objective. ⇒ Gradient descent.

• Linear programming formulation:

minimize t

subject to Re(h1) + Im(h1) = 1

−t ≤
N∑

i=−N

Re(xk−i)Re(hi)− Im(xk−i)Im(hi) ≤ t, ∀ k

• The above formulation requires fewer samples, and enjoys faster convergence.
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Blind Channel Equalization via Linear Programming
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Quadratic Optimization Problems

• Convex quadratically constrained quadratic program (QCQP): each Qi ≥ 0

minimize xTQ0x + pT
0 x + c0

subject to xTQix + pT
i x + ci ≤ 0, i = 1, ..., m

Ax = b.
If Qi = 0, i ≥ 1, then it is a convex QP. If some Qi 6≥ 0, ⇒ nonconvex and hard!

• Optimal norm approximation with bound constraints:

minimize ‖Ax− b‖
subject to `i ≤ xi ≤ ui, i = 1, ..., n.
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Convex Conic Optimization Problems

• Second order cone program (SOCP):

minimize cTx

subject to ‖Aix + bi‖ ≤ dT
i x + ei

includes LP, convex QP, and convex quadratically constrained QP as special cases.

• Semi-definite program (SDP):

minimize Tr(CX)

subject to Tr(AiX) = bi, i = 1, .., m,

X ≥ 0.

includes LP (if C, Ai are diagonal) and SOCP as special cases.

• Model generality: LP < QP < QCQP < SOCP < SDP.

• Solution efficiency: LP > QP > QCQP > SOCP > SDP. For example, it is

much easier to exploit sparsity in LP than in SDP.
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Robust Linear Programming via SOCP

minimize max
‖∆c‖≤ε

(c + ∆c)
T
x

subject to (ai + ∆ai)
Tx ≤ bi + ∆bi, ∀ ‖(∆ai, ∆bi)‖ ≤ εi

Robust linear constraint is equivalent to a SOC constraint

(a + ∆a)
T
x ≤ b + ∆b, ∀ ‖(∆a, ∆b)‖ ≤ ε ⇔ a

T
x + b + ε

√
‖x‖2 + 1 ≤ 0

So the robust linear program is equivalent to a SOCP

minimize t

subject to aT
i x + bi + εi

√
‖x‖2 + 1 ≤ 0

ε‖x‖+ cTx ≤ t
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Schur Complement

Let A > 0 and

X = X
T

=

[
A B

BT C

]
, S = C − B

T
A
−1

B.

Then S is called Schur complement of A in X, and

X ≥ 0 ⇔ S ≥ 0.

Schur complement is useful to represent nonlinear convex constraints as LMIs, e.g.,

(Ax + b)
T
(Ax + b)− c

T
x− d ≤ 0 ⇔

[
I (Ax + b)

(Ax + b)T cTx + d

]
≥ 0.

and
x ≥ 0, y ≥ 0, 1− xy ≤ 0 ⇔

[
x 1

1 y

]
≥ 0
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Some Nonconvex Problems

‘Slight’ modification of convex problems can be very hard.

• Convex maximization, concave minimization, e.g.,

maximize ‖Ax− b‖2

subject to ‖x‖ ≤ 1.

• Nonlinear equality constraints, e.g.,

minimize cTx

subject to xTQix + qT
i x + ci = 0, 1 ≤ i ≤ K,

where Qi ≥ 0.

• Minimizing over nonconvex sets, e.g., integer constraints

find x such that Ax ≤ b, xi is integer.
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Lagrangian Duality Theory

• Primal problem: Let p∗ be the optimal value of convex optimization problem

minimize f0(x)

subject to f1(x) ≤ 0, · · · , fm(x) ≤ 0.

• (Lagrangian) dual function:

g(λ) = inf
x

L(x, λ) = inf
x
{f0(x) + λ1f1(x) + · · ·+ λmfm(x)}

where L(x, λ) = f0(x) + λ1f1(x) + · · · + λmfm(x) is the Lagrangian function
and λi’s are Lagrangian multipliers

• Weak duality: if λ ≥ 0 (dual feasible) and x is primal feasible then f(x) ≥ g(λ).

• Dual problem: Let d∗ be the optimal value of

maximize g(λ)

subject to λ ≥ 0.

• Duality gap: p∗ ≥ d∗. For convex problems and under mild conditions, p∗ = d∗.
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KKT Optimality Condition

• Suppose each fi is differentiable. Then (x∗, λ∗) is primal and dual optimal iff

fi(x
∗) ≤ 0

λ∗ ≥ 0

∇f0(x
∗) +

∑
i λ∗i∇fi(x

∗) = 0

λ∗i fi(x
∗) = 0

Here λ∗ serves as a certificate of optimality.

• Theorem of alternatives:

– there exists x such that fi(x) < 0, for all i

– there exists a λ ≥ 0 and λ 6= 0 such that g(λ) ≥ 0.

Exactly one of the above is true. In practice, λ serves as a certificate of infeasibility.
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Interior Point Algorithms for SDP

minimize cTx

subject to A0 + x1A1 + . . . + xnAn ≥ 0

• Logarithmic barrier function:

φ(x) = − log det(A0 + x1A1 + . . . + xnAn)

• follow the Central path:

x
∗
(t) = argmin

(
tc

T
x + φ(x)

)
, t ∈ [0,∞)

• for any t ≥ 0, it is known f0(x
∗(t)) ≥ f∗ ≥ f0(x

∗(t))− m
t

• works very well in practice; theoretical worst case polynomial complexity

• other polynomial interior point algorithms: primal-dual, predictor-corrector, etc
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Part III: Applications

1. Robust beamforming

2. Optimal linear decentralized estimation

3. Pulse shaping filter design

4. MMSE precoder design for multi-access communication

5. Quasi-maximum likelihood detection via SDP relaxation

6. Transmit beamforming
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Robust beamforming
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Robust Beamforming Application

y

x
1

x x
2 M

xM−1

1 2 M−1 M
w w w w

• Widely used in wireless communications, microphone array speech processing, radar,

sonar, medical imaging, radio astronomy.

• The output of a narrowband beamformer is given by

y(k) = wHx(k), where k is the sample index. (1)
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Robust Beamforming

• The observation vector is given by

x(k) = s(k) + i(k) + n(k) = s(k)a + i(k) + n(k) (2)

where s(k), i(k), and n(k) are the desired signal, interference, and noise components,

respectively. Here, s(k) is the signal waveform, and a is the signal steering vector.

• The robustness of a beamformer to a mismatch between the nominal (presumed) and

real signal steering vectors becomes the main issue.

• Such mismatches can occur in practical situations as a consequence of look direction and

signal pointing errors, imperfect array calibration and distorted antenna shape, array

manifold mismodeling due to source wavefront distortions caused by environmental

inhomogeneities, near-far problem, source spreading and local scattering.
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Robust Beamforming

• The optimal weight vector can be obtained through the maximization of the Signal-to-

Interference-plus-Noise Ratio (SINR)

SINR =
σ2

s |wHa|2
wHRi+nw

(3)

where Ri+n = E
{

(i(t) + n(t)) (i(t) + n(t))
H

}
.

• The maximization of (3) is equivalent to

min
w

wHRi+nw subject to wHa = 1

• The optimal weight vector is wopt = α R−1
i+n a, where α =

(
aHR−1

i+na
)−1

is the

normalization constant (to be omitted for brevity).

• In practice, Ri+n is replaced by the sample convariance matrix.
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Robust Beamforming

• In practical applications, the steering vector distortions e can be bounded:

‖e‖ ≤ ε.

• Then, the actual signal steering vector belongs to the set

A(ε) = {c | c = a + e , ‖e‖ ≤ ε}

• We impose a constraint that for all vectors in A(ε), the array response should not be

smaller than one, i.e.

|wHc| ≥ 1 for all c ∈ A(ε)
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Formulation
• The robust formulation of adaptive beamformer is

minimizew wHR̂w
subject to |wH(a + e)| ≥ 1, for all ‖e‖ ≤ ε.

• For each choice of e, the condition |wH(a + e)| ≥ 1 represents a nonlinear and

nonconvex constraint on w.

• Since there are an infinite number of vectors e with ‖e‖ ≤ ε, the robust beamforming

problem is a semi-infinite nonconvex quadratic program.

• It is well known that the general nonconvex quadratically constrained quadratic

programming problem is NP-hard and thus intractable.
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Convex Reformulation

• However, due to the special structure of the objective function and the constraints,

the robust beamforming problem can be reformulated, surprisingly, as a convex second

order cone program:

minimizew wHR̂w
subject to wHa ≥ ε‖w‖+ 1 , Im

{
wHa

}
= 0.

[Vorobyov-Gershman-Luo, 2001]

• The reformulation is based on simple 4- and Cauchy-Schwartz inequalities and the

homogeneous nature of the objective function.

• The above SOCP can be efficiently and easily solved via interior point method.
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Mathematical Reformulation

|wH
(a + e)| ≥ 1, for all ‖e‖ ≤ ε

m (4-inequality)

|wHa| − |wHe| ≥ 1, for all ‖e‖ ≤ ε

m (Cauchy-Schwartz)

|wHa| − ε‖w‖ ≥ 1

Therefore, the original robust beamforming formulation is equivalent to

minimizew wHR̂w
subject to |wHa| ≥ ε‖w‖+ 1.

⇐ still non-convex!
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Mathematical Reformulation

minimizew wHR̂w
subject to |wHa| ≥ ε‖w‖+ 1.

m Phase rotation

minimizew wHR̂w
subject to wHa ≥ ε‖w‖+ 1 , Im

{
wHa

}
= 0.
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Simulation Examples

Example 1: Steering vector mismatch due to local scattering

• In this example, the presumed signal steering vector is a plane wave impinging on the

array from 3◦.

• The real steering vector is formed by five signal paths and is given by

ã = a +

4∑

i=1

e
jψib(θi) (4)

where a corresponds to the direct path, whereas b(θi) (i = 1, 2, 3, 4) correspond to

the coherently scattered paths, with θi, i = 1, 2, 3, 4 independently drawn.

• The phases ψi, i = 1, 2, 3, 4 are independently and uniformly drawn from the interval

[0, 2π].
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Performance Comparison
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Simulation Examples

Example 2: Near-far steering vector mismatch

• In this example, we model the so-called near-far steering vector mismatch of the desired

signal, whereby the presume steering vector of the signal is a plane wave impinging on the

array from the normal direction 0◦, whereas the real steering vector corresponds to the

source located in the near field of the antenna at the distance D2/λ = (M − 1)2λ/4

from the geometrical center of the array, where D = (M − 1)λ/2 is the length of

array aperture.

• The performance of the methods tested versus the number of training snapshots N for

the fixed SNR = −10 dB is shown in Fig. (c). Fig. (d) shows the performance of

these techniques versus SNR for the fixed training data size N = 30.
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Performance Comparison
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Optimal linear decentralized estimation scheme
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A Generic Decentralized Estimation Problem

• Our goal is to design a DES that minimizes the mean squared error (MSE) E(s− ŝ)2.

• Linear message functions: mn(xn) = QT
nxn, where Qn is a tall matrix with fixed

dimension.

• Orthogonal AWGN channels: m̂n(xn) = mn(xn) + un = QT
nxn + un,where un

is additive Gaussian noise with a known variance Tn.

• Linear fusion function: f (m̂1(x1), m̂2(x2), . . . , m̂N(xN)) = P1m̂1 + · · · +

PNm̂N , where Pn are matrices to be designed.

...

... ...
...

+x1 = H1s + v1

+

+

ŝ = f(m̂1, . . . , m̂N)

m1(x1) m̂1(x1)

u1

m2(x2) m̂2(x2)

u2

mN(xN) m̂N(xN)

uN

FC

xN = HNs + vN

S1

x2 = H2s + v2 S2

SN
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Single Sensor Case

• The mean squared error at the fusion center can be easily calculated as follows:

E(s− ŝ)2
= E

(
s− P

(
QTx + u

))2

= E
(
s− P

(
QT

(Hs + v) + u
))2

= E
((

I− PQTH
)

s− P
(
QTv + u

))2

=
∥∥∥I− PQTH

∥∥∥
2

F
+ Tr

(
P

(
QTQ + T

)
PT

)
,

• This leads to the following formulation:

minimize P,Q

∥∥∥I− PQTH
∥∥∥

2

F
+ Tr (P

(
QTQ + T

)
PT

)

subject to Tr (QTQ) ≤ p, P ∈ R`×k, Q ∈ R`×k,

where p > 0 is the power budget.

• As a fourth order polynomial, the objective function is nonconvex.
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Single Sensor Case
• The objective function

g(Q, P) =
∥∥∥I− PQTH

∥∥∥
2

F
+ Tr (P

(
QTQ + T

)
PT

)

is a fourth order nonconvex polynomial in Q, P.

• g(Q, P) is convex in P, and P is unconstrained ⇒ g(Q, P) can be minimized first

with respect to P to obtain P = HTQ
[
QT (I + HHT )Q + T

]−1
implying

g(P) = n− Tr

(
HTQ

[
QT

(I + HHT
)Q + T

]−1

QTH
)

• Thus, the original formulation becomes

minimize P Tr

((
I + HTQ

(
QTQ + T

)−1

QTH
)−1

)

subject to Tr (QTQ) ≤ p, Q ∈ R`×k,
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Optimal DES Design

• If T = 0, then the objective further simplifies to

ĝ(Q) = Tr

((
I + HTQ

(
QTQ

)−1

QTH
)−1

)

• The blue matrix is a project matrix of rank k.

• The minimum is then attained by choosing the columns of Q as the k largest left

singular vectors of H.

• This gives the optimal design for the single sensor case T = 0.

• Questions:

– What if T 6= 0? ⇐ still open.

– What about the multiple sensor case? ⇐ partial answers.
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Optimal DES Design: Multiple Sensor Case

• The mean squared error at the fusion center can be easily calculated as follows:

E(s− ŝ)2
= E

(
s−

N∑
n=1

Pn

(
QT

nxn + un

))2

=

∥∥∥∥∥I−
N∑

n=1

PnQ
T
nHn

∥∥∥∥∥

2

F

+

N∑
n=1

Tr (Pn

(
QT

nQn + Tn

)
PT

n),

• The optimal linear DES design problem under individual sensor power constraint:

minimize Pn,Qn

∥∥∥∥∥I−
N∑

n=1

PnQ
T
nHn

∥∥∥∥∥

2

F

+

N∑
n=1

Tr (Pn

(
QT

nQn + Tn

)
PT

n)

subject to Tr (QT
nQn) ≤ pn, Pn ∈ R`×kn, Qn ∈ R`n×kn, 1 ≤ n ≤ N,

where pn > 0 is the power budget for sensor n.
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Optimal DES Design: Multiple Sensor Case

• Minimizing Pn first yields the equivalent formulation

minimize ĝ(Q) = Tr




(
I +

N∑
n=1

HT
nQn

(
QT

nQn + Tn

)−1

QT
nHn

)−1



subject to Tr (QnQT
n) ≤ pn, Qn ∈ R`n×kn, n = 1, 2, . . . , N,

• The formulation is still nonconvex in the design variables {Qn}, and thus remains

difficult to handle numerically.

• Theorem: The computational complexity of designing an optimal linear DES is

NP-hard, even in the case where Tn = 0 and `n = 1 for all n.

• In other words, if each sensor is required to send exactly one linear message to the FC,

then the problem of optimally designing these linear message functions (in the MMSE

sense) is NP-hard.

January 10, 2006 56



Applications: optimal linear DES Zhi-Quan (Tom) Luo

Two Special Polynomial Time Solvable Cases

Analytic solution for the case of distortionless channels:

Theorem 1. If each sensor sends at least min{`n, `} real-valued messages to the fusion

center (i.e., kn ≥ min{`n, `}, for all n) and if sensor channels are distortionless (i.e.,

Tn = 0, for all n), then the optimal linear message functions are given by

m(xn) = QT
nxn, with Qn =





√
pnP̂T

n

[
I`

0`n−`

]
, n ∈ N>,

√
pn

[
I`n 0`−`n

]
, n ∈ N≤,

(5)

where P̂n ∈ R`n×`n is the Q-factor in the QR factorization of Hn. Moreover, in this case,

the minimum achievable MSE is given by

Tr




(
I +

N∑
n=1

HT
nHn

)−1

 . (6)
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Two Special Polynomial Time Solvable Cases
Semi-definite programming reformulation for the case kn ≥ min{`n, `} and Tn = tnI

Theorem 2. Assume sensor channel noises are white with covariance matrices Tn = tnI
for some tn > 0. If the number of transmitted messages from sensor n is at least

kn ≥ min{`n, `} for all n, then the optimal linear DES design can be obtained by first

solving the following SDP (in the matrix variables W, {Un, Xn : n ∈ N≤}, {Ûn, X̂n :

n ∈ N>}):

minimize Tr (W)

subject to




W I
I S−

∑

n∈N≤
Un −

∑

n∈N>

Ûn


 º 0,

[
Un HT

n

Hn I + Xn

]
º 0, Tr (Xn) ≤ t

−1
n pn, Xn º 0, ∀ n ∈ N≤,

[
Ûn R̂T

n

R̂n I + X̂n

]
º 0, Tr (X̂n) ≤ t−1

n pn, X̂n º 0, ∀ n ∈ N>.
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and then setting





Qn =
√

tn

[
X1/2

n 0kn−`n

]
, n ∈ N≤,

Q̂n =
√

tn

[
X̂1/2

n 0kn−`

]
, n ∈ N>.

(7)
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Pulse Shaping Filter Design
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Pulse Shaping Filter Design

• Nonconvex constraints can be converted to semi-infinite convex constraints.

• Some semi-infinite linear constraints can be compactly represented using LMI.

• Design of orthogonal signalling waveforms (pulse shapes) for digital communications

can be formulated as an SDP

• Previously awkward design problems can now be efficiently solved, including:

– minimum transmission bandwidth for a given filter length

– minimum filter length for a given bandwidth or spectral mask

• Designs are effective—they produce waveforms with superior performance to those

chosen in recent standards for digital mobile telephony.
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Analogue Baseband PAM
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sc(t) =
∑

n

d[n]p(t− nT )

The ‘channel’ generally includes modulators and demodulators

Common Design Goal: Find a waveform p(t) which minimizes the ‘spectral occupation’

subject to the ‘orthogonality’ constraint:

∫
p(t)p(t− nT ) dt = δ[n],

where δ[n] is the Kronecker delta.
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DSP-Based Baseband PAM
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Now sc(t) has the same form, with

p(t) =

L−1∑

k=0

g[k]φs(t− kT/N),

• waveform design reduces to the design of a finite impulse response (FIR) filter, g[k]

• DSP implementation removes many of the physical constraints on analogue waveform

design
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DSP-Based PAM II

• For most “reasonable” converters, the design goal reduces to finding a filter g[k]

which minimizes the spectral occupation subject to the orthogonality constraint:

∑

k

g[k]g[k −Nn] = δ[n].

• The spectral occupation is specified by a spectral mask:

L(e
jω

) ≤ |G(e
jω

)| ≤ U(e
jω

), for all ω ∈ [0, π]

for some specified M`(f) and Mu(f).

We now demonstrate the principles of our design technique by studying several formulations

of a simple feasibility problem for the filter g[k]
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A Simple Feasibility Problem

For a given N , L and spectral mask L(ejω), U(ejω), either find an orthogonal

filter g[k] of length at most L satisfying the spectral mask, or show that none

exists.

Formulation 1. Given N and L, either find a filter g[k], 0 ≤ k ≤ L− 1 such that

L−1∑

k=`N

g[k]g[k −N`] = δ[`], ` = 0, 1, . . . , b(L− 1)/Nc, (8a)

L(e
jω

) ≤ |G(e
jω

)| ≤ U(e
jω

), ∀ω ∈ [0, π] (8b)

or show that none exists.

Unfortunately, both constraints are non-convex in g[k].
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Spectral Mask Constraints

Spectral mask on polynomial G(·):

L(e
jω

) ≤ |G(e
jω

)| ≤ U(e
jω

) ∀ω ∈ [0, 2π).

• L(·) and U(·) are given. Typically piece-wise constant.

• G(ejω) =
∑n

k=0 g[k]e−jkω is a complex trigonometric polynomial

• Coefficients g[0], . . . , g[n] to be designed
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Non-convexity

Each g[k] satisfies

L(e
jω

) ≤ |G(e
jω

)| ≤ U(e
jω

) ∀ω ∈ [0, 2π).

(Due to the first ‘≤’ part.)

Observe: if g is real then

|G(e
jω

)|2 =

(
n∑

k=0

g[k] cos kω

)2

+

(
n∑

k=0

g[k] sin kω

)2

.
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Convex Reformulation

Define autocorrelation coefficients

rg[k] :=
∑

i

g[k]g[k − i].

Note in the frequency domain (i.e., under Fourier transform)

|G(e
jω

)|2 =

n∑

k=−n

rg[k]e
jkω

= r0 + 2

n∑

k=1

e
−jkω

rg[k] =: Rg(e
jω

).

The two are equivalent.
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Convex Reformulation II

Recall the two nonconvex constraints:

orthogonality constraint:
L−1∑

k=`N

g[k]g[k −N`] = δ[`],

spectral mask constraint: L(e
jω

) ≤ |G(e
jω

)| ≤ U(e
jω

), ∀ω ∈ [0, π]

Under the new variables rg[k]:

orthogonality constraint ⇒ rg[`N ] = δ[`],

spectral mask constraint ⇒ L(e
jω

)
2 ≤ Rg(e

jω
) ≤ U(e

jω
)
2
, ∀ω ∈ [0, 2π).
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A Hidden Condition

• Question: how to ensure the existence of {g[k]} such that

rg[k] =
∑

i

g[k]g[k − i].

• Answer: spectral factorization (Riesz-Fejer)

∃G(·) : Rg(e
jω

) = |G(e
jω

)|2 ∀ω ∈ [0, 2π)

m

Rg(e
jω

) ≥ 0 ∀ω ∈ [0, 2π).
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A Semi-infinite LP formulation

For the autocorrelation of the filter rg[m] =
∑

k g[k]g[k +m], we have Rg(e
jω) =

|G(ejω)|2. Hence an equivalent formulation is:

Formulation 2. Given N , L and the spectral mask L(ejω), U(ejω), either find an

autocorrelation sequence rg[m], 1 − L ≤ m ≤ L − 1, with rg[−m] = rg[m], such

that

rg[`N ] = δ[`], for ` = 0, 1, . . . , b(L− 1)/Nc, (9a)

L(e
jω

)
2 ≤ Rg(e

jω
) ≤ U(e

jω
)
2
, ∀ω ∈ [0, 2π). (9b)

Rg(e
jω

) ≥ 0, for all ω ∈ [0, π], (9c)

or show that none exists.

Note: Rg(e
jω) = rg[0] + 2

∑L−1
m=1 rg[m] cos(mω).

Important: the conditions (9b), (9c) can be transformed to LMI!
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Example: Chip Waveform Design for IS95

• Design a ‘chip’ waveform to compete with that specified in the IS95 standard for Code

Division Multiple Access (CDMA) mobile telephony.

• Design specifications from IS95: relative spectral mask in dB, N = 4

• IS95 recommended filter: L = 48 with symmetric coefficients (linear phase), but does

not satisfy the orthogonality constraints

• Design problem: Find the minimum length filter which satisfies the spectral mask and
the orthogonality constraints

• Results in a filter of length L = 51

• This provides a substantial performance improvement for a marginal increase in

implementation cost

January 10, 2006 72



Applications: Pulse shaping filter design Zhi-Quan (Tom) Luo

Spectra of the filters
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(a) Designed filter, L = 51
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(b) IS95 filter, L = 48

Power spectra of the filters in the example with the magnitude bounds from the IS95

standard. Note: L = 60 is required to obtain orthogonality and the mask achieved by

the IS95 filter
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Spectral Mask Constraint: A Beamforming Example

• A linear array of equi-spaced antennas behaves like a spatial filter.

• Spatial frequency mask cosntraint: explicitly suppresses sidelobes
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MMSE Multi-Access Transceiver Design
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Optimal Transceiver Design: Two-User Multi-Access

s

H

2

1

H

F

F 2

1

+

Noise n

Diagram of Two−user Communication System

x

G

G

1

2

s
s

s

1

2

1

2

received 

signal

Transmitters Channel Matrices Receivers

Mathematical model: x = H1F1s1 + H2F2s2 + ρn, ρ > 0.

Detection: si = sign (Gix) , i = 1, 2.

Goal: Given the channel matrices, H1, H2, design transceivers F1, F2, G1, G2.
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Mean Square Error

• The detection with receiver (equalizer) Gi: ŝi = sign (Gix) .

• Let ei denote the error vector (before making the hard decision) for user i, i = 1, 2.

Then

e1 = G1x− s1 = G1(H1F1s1 + H2F2s2 + ρn)− s1

= (G1H1F1 − I) s1 + G1H2F2s2 + ρG1n.

• This further implies

E(e1e
†
1) = (G1H1F1 − I) (G1H1F1 − I)† + (G1H2F2) (G1H2F2)

†
+ ρ

2G1G
†
1

• Similarly, we have

E(e2e
†
2) = (G2H2F2 − I) (G2H2F2 − I)† + (G2H1F1) (G2H1F1)

†
+ ρ

2G2G
†
2.

January 10, 2006 77



Applications: MMSE multi-access transceiver design Zhi-Quan (Tom) Luo

Formulation: MMSE Transceiver Design

• Our goal is to design a set of transmitting matrix filters Fi and a set of matrix equalizers

Gi such that the total mean squared error

MSE = Tr(E(e1e
†
1)) + Tr(E(e2e

†
2))

is minimized.

• As is always the case in practice, there are power constraints on the transmitting matrix

filters:

Tr(F1F
†
1) ≤ p1, Tr(F2F

†
2) ≤ p2

• The above is nonconvex.

• We first eliminate the variables G1, G2: the MMSE equalizers.
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Formulation: MMSE Transceiver Design

• By minimizing E(e1e
†
1) with respect to G1, we obtain the following MMSE equalizer

for user 1: G1 = F†1H
†
1W, where

W =
(
H1F1F

†
1H

†
1 + H2F2F

†
2H

†
2 + ρ

2I
)−1

.

• Substituting this into E(e1e
†
1) gives:

E(e1e
†
1) = −F†1H

†
1WH1F1 + I.

• Similarly, the MMSE equalizer G2 for user 2 is given by G2 = F†2H
†
2W and resulting

minimized (with respect to G2) mean square error for user 2 is given by:

E(e2e
†
2) = −F†2H

†
2WH2F2 + I.
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Total MSE

Substituting into the above expression gives rise to

MSE = Tr(E(e1e
†
1)) + Tr(E(e2e

†
2))

= −Tr
(
F†1H

†
1WH1F1

)
− Tr

(
F†2H

†
2WH2F2

)
+ 2n

= −Tr
(
WH1F1F

†
1H

†
1

)
− Tr

(
WH2F2F

†
2H

†
2

)
+ 2n

= −Tr
(
W(H1F1F

†
1H

†
1 + H2F2F

†
2H

†
2)

)
+ 2n

= ρ
2
Tr (W) + n,

where the last step follows from the definition of W.
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Formulation: MMSE Transceiver Design

• Introduce matrix variables: U1 = F1F
†
1, U2 = F2F

†
2.

• Then the MMSE transceiver design problem becomes

minimizeU1,U2
Tr

(
(H1U1H

†
1 + H2U2H

†
2 + ρ2I)−1

)

subject to Tr(U1) ≤ p1, Tr(U2) ≤ p2,

U1 ≥ 0, U2 ≥ 0.

• Reformulate using the auxiliary matrix variable W:

minimizeW,U1,U2
Tr (W)

subject to Tr(U1) ≤ p1, Tr(U2) ≤ p2,

W ≥ (H1U1H
†
1 + H2U2H

†
2 + ρ2I)−1

U1 ≥ 0, U2 ≥ 0.
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SDP Formulation

• The constraint W ≥ (H1U1H
†
1 + H2U2H

†
2 + ρ2I)−1 is equivalent to LMI:

[
W I
I H1U1H

†
1 + H2U2H

†
2 + ρ2I

]
≥ 0. (3)

• We obtain an SDP formulation:

minimizeW,U1,U2
Tr (W)

subject to Tr(U1) ≤ p1, Tr(U2) ≤ p2,

W satisfies (3),

U1 ≥ 0, U2 ≥ 0.

• Interior point method with arithmetic complexity O(n6.5 log(1/ε)), ε > 0 is the

solution accuracy.
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OFDM: Diagonal Designs are Optimal!

Result

If H1 and H2 are diagonal, as in the OFDM systems,

then the optimal transmitters are also diagonal.

Implication

The MMSE transceivers for an multi-user OFDM system

can be implemented by optimally setting the data rates and

allocating power to each subcarrier for all the users.
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Linearly Precoded/Power Loaded OFDM
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From SDP to SOCP Formulation

• Restricting to diagonal designs, the SDP becomes SOC:

minimizew,u1,u2

n∑

i=1

wi

subject to
n∑

i=1

u1(i) ≤ p1,

n∑

i=1

u2(i) ≤ p2,

wi

(|h1(i)|2u1(i) + |h2(i)|2u2(i) + ρ2
) ≥ 1,

u1(i) ≥ 0, u2(i) ≥ 0, i = 1, 2, ..., n.

• There exist highly efficient (general purpose) interior point methods to solve the above

second order cone program.

• Arithmetic complexity O(n3.5 log(1/ε)), ε > 0 is the accuracy.
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Properties of Optimal MMSE Transceiver

• Let u∗1 ≥ 0, u∗2 ≥ 0 be the optimal transceivers. Define:

{
I1 = {i | u∗1(i) > 0, u∗2(i) = 0}, I2 = {i | u∗1(i) = 0, u∗2(i) > 0},
Is = {i | u∗1(i) > 0, u∗2(i) > 0}, Iu = {i | u∗1(i) = 0, u∗2(i) = 0}.

• I1, I2: subcarriers allocated to user 1 and user 2;

Is and Iu: subcarriers shared and unused;

data rates: (|I1|+ |Is|)/n, (|I2|+ |Is|)/n

• – For each i ∈ I1 and j ∈ I2, we have
|h1(i)|2
|h2(i)|2 ≥

|h1(j)|2
|h2(j)|2.

– For all i, j ∈ Is, we have
|h1(i)|2
|h2(i)|2 =

|h1(j)|2
|h2(j)|2.

– For any i ∈ Iu and any j ∈ I1 ∪ Is, we have |h1(i)|2 < |h1(j)|2. Similarly, for

any i ∈ Iu and any j ∈ I2 ∪ Is, we have |h2(i)|2 < |h2(j)|2.
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Intuitive Interpretation

• x = H1F1s1 + H2F2s2 + ρn, with Hi, Fi diagonal; x(i) = h1(i)f1(i)s1(i) +

h2(i)f2(i)s2(i) + ρ2n(i).

• In a fading environment, the path gains |h1(i)|2, |h2(i)|2 are random,

⇒ the probability of having two equal path gains is zero.

⇒ Is is singleton: at most one subcarrier should be shared by the two users.

• The remaining subcarriers are allocated to the two users according to the path gain

ratios: subcarrier i to user 1 and subcarrier j to user 2 only if

|h1(i)|2
|h2(i)|2

≥ |h1(j)|2
|h2(j)|2

.

• The subcarriers in Iu have small path gains for both users (i.e., both |h1(i)|2 and

|h2(i)|2 are small), and they should not be used by either user, i.e., they are useless

subcarriers!
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Optimal Rate Allocation for Multi-Terminal Source Coding
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Distributed Vector Source Estimation
• Assume a common vector source s ∈ R`

• Sensor observations: xi = His + vi, with

• Communication channels: orthogonal AWGN, differing noise variances

• Given a power/bandwidth/MSE requirement, design:

? local message functions mi(xi),

? final fusion function ŝ = f(m̂1, . . . , m̂L)

...

... ...
...

+x1 = H1s + v1

+

+

ŝ = f(m̂1, . . . , m̂L)

m1(x1) m̂1(x1)

u1

m2(x2) m̂2(x2)

u2

mL(xL) m̂L(xL)

uL

FC

xL = HLs + vL

S1

x2 = H2s + v2 S2

SL
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The Vector Gaussian CEO Problem

• Source s ∼ N (0, I`); Linear observation model with (deterministic and known) Hi,

and noise vi ∼ N (0, Ωvi
).

• Local observations are quantized to digital messages with finite rates, and are

transmitted to the FC without error; FC reconstructs s based on received finite-rate

messages.

• Assuming orthogonal links, (the separation theorem holds). [Xiao-Luo, 2005]
⇒ optimal joint design = optimal source coding + optimal channel coding.

• Rate distortion region IR(D): the set of all rates that allow the reconstruction of s
at the FC within a given distortion D.

...

...

nRL bits

nR2 bits

nR1 bits
x

n
1

= H1s
n

+ v
n
1 f1

x
n
2

= H2s
n

+ v
n
2 f2

x
n
L = HLs

n
+ v

n
L fL

g
ŝ
n

s
n
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Existing Work

• Berger-Tung [Berger-Tung’78] proposed an achievable region for the vector CEO

problem.

• The tightness of the Berger-Tung achievable region has not been proved in general.

• For the vector Gaussian CEO problem,

– [Gastpar et al’05] computed the sum-rate in the Berger-Tung achievable region

and interpreted it as a distributed Karhunen-Loève transform. They showed that the

problem is nonconvex.

– [Schizas-Giannakis-Jindal’05] also analyzed the achievable sum-rate in the Berger-

Tung region in a general framework of EC or CE schemes.

– They both proposed iterative algorithms to compute the optimal rate allocations

which minimizes sum-rate in the B-T region.

• Our work: the optimal rate allocation problem can be reformulated as a convex

Maxdet problem.
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Berger-Tung Region

• Let us denote IL = {1, 2, ..., L} and define

R(D0; Ωw1, Ωw2, . . . , ΩwL
)

def
=



(R1, . . . , RL)

∣∣∣∣∣∣
∑

i∈A
Ri ≥ I(XA; ZA|ZAc); ∀ A ⊆ IL



 .

• The computation of B-T region requires specification of the conditional probability

distribution P (zi | xi).

• Berger-Tung considered the following Gaussian test channels

zi = xi + wi, i = 1, 2, . . . ,

where wi ∼ N (0, Ωwi
) are independent of xi. The resulting achievable region is

RBT
(D0) =

⋃

{Ωwi}
R(D0; Ωw1

, Ωw2
, . . . , ΩwL

).
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Berger-Tung Region for the Vector Gaussian CEO
Problem

• The sum-rate achieved through the Gaussian test channels for any given {Ωwi
} is

RΣ
def
=

L∑

i=1

Ri = I(x1 . . . , xL; z1, . . . , zL)

=
1

2
log

{
det

(
I` +

L∑

i=1

HT
i (Ωvi

+ Ωwi
)
−1Hi

)
L∏

i=1

det(I`i
+ Ω

−1
wi

Ωvi
)

}
.

• The specification of a Gaussian test channel also determines the final distortion
covariance matrix of estimating s from {zi}:

D =

(
I` +

L∑

i=1

HT
i (Ωvi

+ Ωwi
)
−1Hi

)−1

.
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Optimal Rate Allocation
• Minimizing the sum-rate subject to a distortion constraint leads to

min RΣ = R1 + . . . + RL

s.t. Tr(D) ≤ D0.

• The optimal rate allocation that is equivalent to determining the optimal noise
covariance matrices Ωwi

for L parallel Gaussian test channels.

• In terms of Ωwi
, the optimal rate allocation problem can be formulated as

min
Ωwi

1

2
log det

(
I` +

L∑

i=1

HT
i (Ωvi

+ Ωwi
)
−1Hi

)
+

1

2

L∑

i=1

det(I`i
+ Ω

−1
wi

Ωvi
)

s.t. Tr

(
I` +

L∑

i=1

HT
i (Ωvi

+ Ωwi
)
−1Hi

)−1

≤ D0,

Ωwi
º 0.
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Centralized Case (L = 1)

• If L = 1, or full cooperation is allowed among encoders, then there is analytical

solution for the previous problem.

• For the centralized case, the optimal rate allocation can be constructed as follows

[Schizas-Giannakis-Jindal’05]:

– obtain an MMSE estimator of s based on x;

– perform a classical vector Gaussian compression of the MMSE estimator (inverse

water-filling).
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General Multi-sensor Case: L > 1

• When L > 1, the optimal rate allocation problem is not convex in terms of the matrix

variables {Ωwi
: i = 1, 2, . . . , L}.

• For the general case of L > 1, Ωw must have block-diagonal structure

Ωw =




Ωw1
0 . . . 0

0 Ωw2
. . . 0

... ... . . . ...

0 0 . . . ΩwL


 .

This condition is needed to represent requirement that encoders must operate
independently.

• [Gastpar et al’05] [Schizas-Giannakis-Jindal’05] proposed Gauss-Seidel type

optimization procedures to choose {Ωwi
}.

– local traps

– initialization, stepsize selections, termination
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Convex Reformulation

• We can reformulate it as an equivalent Maxdet problem that is convex.

• Step 1: introduce a distortion covariance matrix D, then we obtain

min
D;Ωwi

−1

2
log det D +

L∑

i=1

1

2
log det(I`i

+ Ω
−1
wi

Ωvi
)

s.t. Tr(D) ≤ D0,

Ωwi
º 0, D º 0,

(
I` +

L∑

i=1

HT
i (Ωvi

+ Ωwi
)
−1Hi

)−1

¹ D.

• Step 2: use the Schur complement property to obtain the following equivalent matrix

inequality for the third constraint
[

I` +
∑L

i=1 HT
i (Ωvi

+ Ωwi
)−1Hi I

I D

]
º 0.
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Convex Reformulation

• Step 3: Introduce new matrix variables Qi = (Ωvi
+ Ωwi

)−1 for each i. Then,

I`i
+ Ω

−1
wi

Ωvi
= (I`i

− QiΩvi
)
−1

.

Replacing Ωwi
by Qi, we can get the following equivalent problem:

min
D; Qi

−1

2
log det D−

L∑

i=1

1

2
log det(I`i

− QiΩvi
)

s.t. Tr(D) ≤ D0,

D º 0,
[

I` +
∑L

i=1 HT
i QiHi I

I D

]
º 0.

• The above Maxdet problem is now convex in the new variables {D, Qi : i =

1, 2, . . . , L}.
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Numerical Plots of the Sum-Rate Distortion Function

• In the simulation, we take L = 2, and

Ωs = I2;

Ωv1
= Ωv2

= I2;

H1 =

[
1 0

0 2

]
,

H2 = U
[

1 0

0 2

]
UT ,

where

U =
√

2
2

[
1 −1

1 1

]
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Quasi-ML Detection Via SDP Relaxation
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MIMO Channel

s1

s2

sn

y1

y2

ym

h12

hn2

h22

yi =

√
ρ

n

∑

k

hiksk + vi

Written in the vector form:

y =

√
ρ

n
H s + v

• n - number of transmit antennas;

• m - number of receive antennas;

• Sn - constellation of signals with

dimension n;

• s ∈ Sn - vector of transmitted signals

drawn from Cn;

• y ∈ Cm - vector of received signals;

• H ∈ Cm×n - the matrix of fading

coefficients, hik ∼ N (0, 1), ∀i, k;

• ρ - expected value of SNR at each receiver

antenna;

• v ∈ Cm - i.i.d. noise, vi ∼ N (0, 1), ∀i.

• Consider n = m in this talk.
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Maximum-likelihood detection

• For a memoryless channel with equiprobable input signals (typical in practice), the

maximum-likelihood (ML) detection achieves the minimum error probability Pe.

• ML Detector solves the following optimization problem:

sML = arg max
s∈Cn

p(y|s, H)

• For the Gaussian noise ML detection can be written in the form:

sML = arg min
s∈Cn

∥∥∥∥ y −
√

ρ/n H s
∥∥∥∥

2

• The problem is NP-hard in general due to the discrete nature of the constellation set.
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Challenge of ML detection

• MIMO systems:

– Exhaustive search can be applied for small n.

– For reasonably large n (e.g., n = 200), exhaustive search is prohibitively expensive

• Existing approaches:

– either has polynomial complexity (O(n3)) but sacrifices performance,

– or ensures good decoding performance with exponential complexity
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Existing suboptimal approaches

• Solve an unconstrained problem with penalty function:

s̄ = arg min
s∈Rn

‖y −
√

ρ/n Hs‖2
+

γ

2
‖s‖2

• Assuming: invertibility of HTH + γI; BPSK signalling, the estimate of ML solution

can be expressed as

ŝ = sign

(√
ρ

n

(
ρ

n
HTH + γI

)−1

HTy

)

• Choosing different values for penalty factor γ we obtain

γ = 0, for decorrelator
γ →∞, for matched filter
γ = 1, for LMMSE detector.

• All with O(n3) complexity, but sacrifices performance.
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Performance degradation of suboptimal schemes
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Another suboptimal scheme: Sphere Decoder

Intuition:

• The objective function is convex over Rn.

• Integer solution must be close to the

unconstrained minimum:

ŝ = arg min
s∈Rn

‖y −
√

ρ/n Hs‖2

=
√

n/ρ (HTH)
−1HTy

• Idea: localize the exhaustive search to the

sphere around zero-forcing solution ŝ.

• Two questions:

– How to choose sphere radius r?

– How to tell which points are inside the

sphere? −2
−1

0 
1 

2 

−3−2−10  1 2 3 
0

2

4

6

8

10

12

14

16
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Another suboptimal scheme: Sphere Decoder

• Sphere Decoder [Fincke-Pohst, 1985] answers the second question:

– Let
√

ρ/n H = VR (QR-decomposition), then we have

‖y −
√

ρ/n Hs‖2
=

ρ

n
(s− ŝ)THTH(s− ŝ) = (s− ŝ)TRTR(s− ŝ)

=

n∑

i=1

r
2
ii(si − ŝi +

n∑

j=i+1

rij

rii

(xj − x̂j))
2 ≤ r

2

– A necessary condition for s inside the sphere is r2
nn(sn− ŝn)

2 ≤ r2. The remaining

coordinates sn−1, . . . , s1 can be searched iteratively. Back-track if necessary.

• The expected complexity is exponential [Jalden-Ottersten, 2004], despite good empirical

performance for small values of n and large ρ.
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Sphere Decoder Performance

SD has excellent performance when it works, but can fail in low SNR region or for

large systems
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Figure 1: BER degradation due to the limit on detection time. Simulation parameters: BPSK

modulation, SNR = 10 dB and time limit per bit = 6.3 ms.
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Dilemma

Existing approaches for MIMO detection

• either has a worst case polynomial complexity O(n3), at a substantial performance
loss

• or finds the ML solution via heuristic search, but with an exponential average

complexity

• Questions:

– is there a polynomial approximation algorithm which offers a constant factor

performance guarantee?

– How about SDP relaxation approach?
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A close look at ML detection problem

• Data model: H ∼ N(0, I); y =
√

ρ
nHe + v; v ∼ N(0, I).

• Define matrix Q and new variable x:

Q =

[
(ρ/n) HTH −

√
ρ/n HTy

−
√

ρ/n yTH ‖y‖2

]
, x =

[
s
1

]

• The objective function (negative log likelihood function) can be written as

∥∥∥∥y −
√

ρ/n Hs
∥∥∥∥

2

= xTQx, ⇐ homogenization

and the ML detection problem becomes

fML = minimize xHQx
subject to x ∈ {−1, 1}n ⇐ BQP: NP-hard
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SDP Relaxation of BQP

• Introducing matrix variable X = xxH º 0, then X is rank 1 and

xHQx = Tr(QxxH
) = Tr(QX), and Xi,i = x2

i = 1.

• ML detection problem is equivalent to the problem

fML := min Tr(QX)

s.t. X º 0, X is rank-1

Xi,i = 1, i = 1, . . . , n + 1.

⇐ BQP reformulation

m

fML = minimize xHQx
subject to x ∈ {−1, 1}n ⇐ BQP: NP-hard
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SDP Detector, Relaxation

• SDP Detector drops the only non-convex constraint rank(X) = 1 and solves

fSDP := min Tr(QX)

s.t. X º 0,

Xi,i = 1, i = 1, . . . , n + 1.

• The output Xopt of the SDP problem is no longer rank-1. (But almost rank-1)

• Different randomized rounding procedures can be employed to generate an estimate of

transmitted signals ŝ, given Xopt.

• The complexity of the problem is O(n3.5) (interior point methods).
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SDP Detector, Randomized Rounding

1. Take a spectral decomposition:

Xopt =

n+1∑

i=1

λiuiu
T
i .

2. Pick eigenvector ū that corresponds to the largest eigenvalue λ̄.

3. Generate a fixed number of vectors x randomly according to the distribution:

Pr{xi = +1} =
1 +

√
λ̄ ūi

2
, Pr{xi = −1} =

1−
√

λ̄ ūi

2
.

4. Note: E{xi} =
√

λ̄ ūi.

5. Output x̂ that achieves the smallest objective value fSDR = xTQx.
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SDP Detector, BER vs SNR, n = 10
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Key property: for all ρ, performance gap bounded for all and n!
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Part VI: Softwares∗

∗
This list is somewhat outdated now. Consult www for the latest versions of software available.
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SDPA

• Authors: Fujisawa, Kojima, Nakata

• Version; available: 5.02, 9/2000; yes (binary only)

• Key paper: [43]

The software manual and the SDPA source codes can be downloaded from

http://is-mj.archi.kyoto-u.ac.jp/~fujisawa/research.html

• Features: primal-dual method, users Meschbach library

• Language, Input format: C++, SDPA

• Solves: SDP

• Remarks: numerically robust, good for small size SDPs; parallel versions avaliable.

January 10, 2006 116



Softwares Zhi-Quan (Tom) Luo

SeDuMi

• Authors: Sturm

• Version; available: 1.04, 9/2000; yes

• Key paper: [22]

• Features: self-dual embedding, dense column handling

• Language, Input format: Matlab + C, Matlab, SDPA, SDPpack

• Solves: SDP, convex quadratic program, SOCP, linear program

• Remarks: benchmark SDP/SOCP solver; now being maintained at McMaster

University, Canada; various Matlab interfaces have been built for SeDuMi, including

“convex” from Stanford University.
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CSDP

• Authors: Borchers

• Version; available: 3.2, 12/15/2000; yes

• Key paper: [44]

• Features: infesaible predictor-corrector path following interior method

• Language, Input format: C; SDPA

• Solves: SDP

• Remarks: small to medium sized SDP’s. No support for SOCP constraints
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DSPA

• Authors: Benson and Ye

• Version; available: 3.2, 11/2000; yes

• Key paper: [45]

• Features: Dual scaling potential reduction method, Matlab interface, generates primal

solution only when requested

• Language, Input format: C; SDPA

• Solves: SDP

• Remarks: good for solving large sparse problems arising from combinatorial

optimization
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SDPT3

• Authors: Toh, Todd, Tutuncu

• Version; available: 3.0; yes

• Key paper: [46]

• Features: infeasible primal-dual and homogeneous self-dual methods, Meschbach

library, Lanczos steplength control

• Language, Input format: Matlab+C, SDPA

• Solves: SDP and SOCP

• Remarks: allows Hermitian matrix variables, good for small/medium size problems

(with up to around a thousand constraints involving matrices of order up to around

a thousand; can also solve some large sparse problems (up to 20,000 constraints and

50,000 variables)
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MOSEK

• Authors: Andersen

• Version; available: 1.4-31; yes (binary)

• Key paper: [47]

• Features: special SOCP algorithm

• Language, Input format: C; QPS, AMPL

• Solves: SOCP

• Remarks: similar to SeDuMi except is 100% C code for speed; callable from Matlab;

exploits sparsity and handles fixed and upper bounded variables; does not handle

semidefinite matrix cone.
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Part V: References∗

∗ Somewhat outdated.

January 10, 2006 122



References Zhi-Quan (Tom) Luo

References

[1] Nesterov, Y. and Nemirovskii, A., Interior-Point Polynomial Algorithms in Convex Programming, SIAM
Studies in Applied Mathematics, SIAM, Philadelphia, 1994.

[2] Ye, Y., Interior Point Algorithms: Theory and Analysis, Wiley-Interscience Series in Discrete
Mathematics and Optimization, John Wiley & Sons, 1997.

[3] Boyd, S., El Ghaoui, L., Feron, E. and Balakrishnan, V., Linear Matrix Inequalities in System and
Control Theory, SIAM Studies in Applied Mathematics, SIAM, Philadelphia, 1994.

[4] Boyd, S. and Vandenberghe, L., Convex Optimization, Cambridge University Press, 2003. [Some of the
figures and examples in this tutorial were modelled from this book.]

[5] Mittelmann, H.D., “An Independent Benchmarking of SDP and SOCP Solvers,” preprint, Department
of Mathematics, Arizona State University, 2001.

[6] Wang, X., Lu, W.S. and Antoniou, A., “Constrained Minimum-BER Multiuser Detection,” IEEE
Transactions on Signal Processing, Vol. 48, No. 10, Oct. 2000, pp. 2903–2909.

[7] Vandenberghe, L. and Balakrishnan, V., “Algorithms And Software Tools For LMI Problems In Control:
An Overview,” Proceedings of the 1996 IEEE International Symposium on Computer-Aided Control
System Design, 1996, pp. 229–234.

[8] Vandenberghe, L. and Balakrishnan, V., “Algorithms And Software For LMI Problems In Control,”
IEEE Control Systems Magazine, Vol. 17, No. 5, Oct. 1997, pp. 89–95.

January 10, 2006 123



References Zhi-Quan (Tom) Luo

[9] Wu, S.-P., Boyd, S. and Vandenberghe, L., “FIR Filter Design Via Semidefinite Programming And
Spectral Factorization,” Proceedings of the 35th IEEE Conference on Decision and Control, Vol. 1,
1996, pp. 271–276.

[10] Alkire, B. and Vandenberghe, L., “Handling Nonnegative Constraints In Spectral Estimation,”
Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers,
Vol. 1 , 2000, pp. 202–206.

[11] Balakrishnan, V., Wang, F. and Vandenberghe, L., “Applications Of Semidefinite Programming In
Process Control,” Proceedings of the 2000 American Control Conference, Vol. 5, 2000, pp. 3219–3223.

[12] Vandenberghe, L. and Balakrishnan, V., “Semidefinite Programming Duality And Linear System Theory:
Connections And Implications For Computation,” Proceedings of the 38th IEEE Conference on Decision
and Control, Vol. 1, 1999, pp. 989–994.

[13] Xiao, L., Johansson, M., Hindi, H., Boyd, S. and Goldsmith, A., “Joint Optimization Of Communication
Rates And Linear Systems”, Proceedings 2001 Conference on Decision and Control, December 2001,

[14] Kosut, R., Chung, W., Johnson, C. Boyd, S., “On Achieving Reduced Error Propagation Sensitivity
In DFE Design Via Convex Optimization” Proceedings of the 39th IEEE Conference on Decision and
Control, Vol. 5, pp. 4320 - 4323 , December 2000.

[15] Wu, S.-P. and Boyd, S., “SDPSOL: A Parser/Solver For Semidefinite Programs With Matrix Structure”,
in Recent Advances in LMI Methods for Control, L. El Ghaoui and S.-I. Niculescu, editors, SIAM,
chapter 4, pp. 79–91, 2000.

[16] Lebret, H. and Boyd, S., “Antenna Array Pattern Synthesis Via Convex Optimization,” IEEE
Transactions on Signal Processing, Vol. 45, No. 3, March 1997, pp. 526–532.

January 10, 2006 124



References Zhi-Quan (Tom) Luo

[17] Lobo, M., Vandenberghe, L., Boyd, S. and Lebret, H., “Applications Of Second-Order Cone
Programming,” Linear Algebra and its Applications, Vol. 284, November 1998, pp. 193–228.

[18] Vandenberghe, L. Boyd, S. and El Gamal, A., “Optimizing Dominant Time Constant In RC Circuits”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 17, No. 2, Feb.
1998, pp. 110–125.

[19] Alkire, B. and Vandenberghe, L., “Interior-Point Methods For Magnitude Filter Design,” Proceedings
of 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 6, 2001, pp.
3821–3824.

[20] Dumitrescu, B., Tabus, I. and Stoica, P., “On The Parameterization Of Positive Real Sequences And
Ma Parameter Estimation,” IEEE Transactions on Signal Processing, Vol. 49, No. 11, Nov. 2001, pp.
2630 -2639.

[21] Stoica, P.; McKelvey, T.; Mari, J., “MA Estimation In Polynomial Time,” IEEE Transactions on Signal
Processing, Vol. 48, No. 7, July 2000, pp. 1999 -2012.

[22] Sturm, J. F., “Using Sedumi 1.02, A Matlab Toolbox For Optimization Over
Symmetric Cones,” Optim. Meth. Software, vol. 11–12, pp. 625–653, 1999. See
http://fewcal.kub.nl/sturm/software/sedumi.html for updates.

[23] Vandenberghe, L. and Boyd, S., “Semidefinite Programming”, SIAM Review, vol. 31, pp. 49–95, 1996.

[24] Yu, W., Rhee, W. and Cioffi, J., “Multiuser Transmitter Optimization for Vector Multiple Access
Channels”, manuscript, STAR laboratory, Department of Electrical Engineering, Stanford University,
CA 94305-9515.

January 10, 2006 125



References Zhi-Quan (Tom) Luo

[25] Pesavento, M., Gershman, A. and Luo, Z.-Q., “Robust Array Interpolation Using Second-Order Cone
Programming,” Accepted for publication in IEEE Signal Processing Letters.

[26] Ma, W.-K., Davidson, T.N., Wong, K.M., Luo, Z.-Q. and Ching, P.-C., “Quasi-maximum-likelihood
Multiuser Detection Using Semi-definite Relaxation,” Accepted for publication in IEEE Transactions
on Signal Processing.

[27] Luo, Z.-Q., Meng, M., Wong, K.M. and Zhang, J.-K., “A Fractionally Spaced Blind Equalizer Based
on Linear Programming,” Accepted for publication in IEEE Transaction on Signal Processing.
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